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The structures of separation on a smooth circular cylinder immersed in a sinusoidally
oscillating flow are examined in detail for a constant value of the frequency
parameter β as the Keulegan–Carpenter number K is systematically increased from
the marginally stable to fully separated region in the (K , β)-plane. The positions
of the separation points are measured using sublayer fences, flush-mounted hot-film
sensors, and extensive high-speed video recordings. The variations of the length
scales of the resulting structures, the irregularity of the dye concentration fields, and
measurements with two sensors have shown that the separation is three-dimensional,
time-dependent, often turbulent, and far from being an eruption of a double-sided
single shear layer, or a self-contained bubble. The increase of the three-dimensionality
of the flow, evolution of various sizes of structures, secondary separations within the
primary separation zone, and the occasional eruption of multiple shear layers are
quite similar to the first direct numerical simulation of a laminar separation bubble
in the presence of an oscillating inlet flow.

1. Introduction
Separation is a fundamental unsolved phenomenon in modern fluid dynamics and

the numerical and experimental study of its occurrence in both steady and unsteady
ambient flow about bluff bodies is of paramount importance. A classical example of
an unsteady moving separation is that which occurs on a smooth circular cylinder
immersed in a sinusoidally oscillating flow, defined here by u(t) = −Um cos(2πt/T ),
where Um is the maximum velocity in the cycle and T is the period of oscillation.

The structure of separation depends primarily on the Keulegan–Carpenter (1956)
number K = 2πA/D = UmT/D, where A is the amplitude of the relative motion and
D is the diameter of the cylinder, and the frequency parameter β = f D2/ν = Re/K ,
where f (=1/T ) is the frequency of the flow oscillation, Re = UmD/ν and ν the
kinematic viscosity of the fluid. Schlichting (1932, 1979) was the first to show that
the ratio of the convective acceleration to local acceleration in a one-dimensional
flow is proportional to UmT/D or to A/D. Thus, a flow with a relatively small K is
said to be inertia dominated and a flow with a relatively large K is said to be drag
dominated (Sarpkaya 1986).

Aside from its intrinsic interest, the subject is of practical importance in many
fields of engineering. In fact, the forces exerted on bodies subjected to vortex-excited
oscillations (Sarpkaya 2004) and to the springing and ringing response of compliant
systems require a clear understanding of the flow in the range of Keulegan–Carpenter
numbers from about 10−3 to 10 and frequency parameters from about 1 to 108.
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There are at present no known predictions of the drag and inertia forces exerted
on slender structures undergoing excitation, save for those at K values smaller
than about 2 and β values smaller than about 1000 where the classical solution of
Stokes (1851) for unseparated laminar flow holds true. Furthermore, the (K, β)-plane
contains unexpected phenomena such acoustic streaming (Schlichting 1932; Riley
1975; Lighthill 1978), Honji instability (Honji 1981), dipole tubes, quasi-coherent
structures, and transition to turbulence, at least during part of the cycle (Sarpkaya
1993, 2002). In other words, every possible combination of K and β is of practical
as well as theoretical importance and touches all aspects of time-dependent flows.
However, the difficulties encountered in separating very small drag forces from the
large inertial forces and the extreme difficulties encountered in experiments and
three-dimensional numerical simulations remain as challenging as ever.

There are only a few numerical simulations relevant to our experiments, i.e. the
structures of unsteady separation in unsteady ambient flow. However, numerous
contributions have been made to the simulation of the wakes of bluff bodies in
time-dependent flows. We will mention here only a few of the most representative
contributions. Dütsch et al. (1998) conducted time-averaged LDA measurements and
numerical simulations of the laminar flow induced by the harmonic in-line oscillations
of a circular cylinder in water at rest for (Re, K) : (100, 5), (200, 10), and (210, 6)
and confirmed that both flow field and force coefficients can be reliably predicted
by numerical simulations, at least within the range of their parameter space. Even
though they have not discussed the details of the flow in the vicinity of the mobile
separation points, they have noted that an upper and a lower boundary layer flow
developed as the oscillating cylinder moved in the forward direction and separated at
the same upper and lower position on the cylinder wall. The separating flow produced
two counter-rotating vortices of apparently the same magnitude of strength. There
was no separation at the front and rear stagnation points. As will be discussed in
more detail below, our sublayer fences and flush-mounted hot-film sensors revealed
no separation at θ = 0 and θ = π (the stagnation points) at any time.

To the best of our knowledge, there are no experiments which deal with separations
within a separation bubble. Justesen (1991) computed the separation angle with
respect to phase on a cylinder subjected to sinusoidally oscillating laminar flow (β =
196), assuming that the flow remains two-dimensional and the separation occurs where
the wall shear vanishes. According to the MRS criterion (Moore 1957; Rott 1956;
Sears 1956), it is the simultaneous vanishing of the shear and the velocity at a point
within the boundary layer that determines the separation point. However, the proposed
‘criterion’ is extremely difficult to apply because it requires a priori knowledge of the
separation speed (see e.g. Williams 1977) in addition to assuming that there is only
one separation point while, in fact, there can be several simultaneously occurring
separations at a given time, as demonstrated in this paper. Dong & Karniadakis
(2005) advanced the state of the art of direct numerical simulation (DNS) to Reynolds
numbers as high as 10 000 for turbulent flows past stationary and oscillating circular
cylinders. Their emphasis was placed on the influence of the cylinder oscillation
on the physical quantities, such as the drag and lift coefficients. Comparisons with
the available experimental data have shown that the simulation has captured the
physical quantities reasonably well. However, the details of flow in the vicinity of the
mobile separation points were not elucidated. Elston, Blackburn & Sheridan (2006)
investigated the oscillatory flow past a stationary cylinder at low K (∈ [0, 10]) and
β (∈ [0, 100]) values using Floquet analysis and direct numerical simulation. They
have shown that there are two fundamentally different types of symmetry-breaking
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instability within this range: two-dimensional and three-dimensional. There is also
a direct primary breakup to three-dimensional instability at frequency parameters
β larger than about 50. This is like the ‘bypass transition’ (Morkovin 1993) in
steady flow over a flat plate without the appearance of Tollmien–Schlichting waves
‘when the external mainstream initially contains rotational motion either in the
form of mainstream turbulence or discrete identifiable vortex motions’ (Smith &
Walker 1995). Elston et al. (2006) also noted that ‘On the basis of Sarpkaya’s results
(2002), it further appears that for all β larger than about 50 this mode remains the
first to be encountered as Keulegan–Carpenter numbers are increased from small
values’. Authoritative descriptions of flow around circular cylinders with emphasis
on fundamentals, applications, and time-dependent flows are given by Zdravkovich
(1997, 2003, 2006) in his monumental work and we can do no better than to refer to
that for additional inspiration.

A definition of separation that is applicable to all kinds of flows has not yet
been established. Taneda (1980) argued that the departure of dye filaments from the
surface is the most useful definition of separation for most time-dependent flows.
This definition coincides with the Prandtl criterion in the case of two-dimensional
flow over a fixed wall, and the flow separation can be detected only by observing
the integrated streaksheet. According to Van Dommelen & Shen (1982) and Walker
(2003), it is the abrupt eruption of a ‘double-sided shear layer’ and the expelling
of concentrated vorticity into the external flow. However, the numerical simulation
of narrow eruptive spires in turbulent shear flows is beyond the scope of even the
current spectral methods (Brinckman & Walker 2001).

In sinusoidally oscillating flows, as in the case under consideration, the shear layers
undergo rapid transition to turbulence and the position of transition moves back
and forth on the crowns of the cylinder (without wake reversal for K smaller than
about 5). The theoretical and experimental treatment of the boundary layers with
wake return is even more difficult, particularly when the state of the boundary layer
changes during a given cycle. An in-depth discussion of these is presented by Haller
(2004) and will not be repeated here. Suffice it to note that, recently, Kilic, Haller &
Neishtadt (2005) used the method of averaging to improve separation criteria for two-
dimensional unsteady flows with a well-defined asymptotic mean velocity. However,
they have concluded that, ‘the application of averaging methods to moving unsteady
separation remains an open question. In moving separation, the location of the
separation point changes in time, and hence will not be captured by averaging over
infinite times’.

For the periodic flow over a circular cylinder, the minimum value of K at which
separation occurs has not yet been determined, owing to a number of difficulties
associated with computational and experimental limitations. It appears that it is
strongly dependent on K and β and the manner in which the observations are made,
i.e. the inception and visibility of separation do not occur simultaneously. Regarding
the structures of separation, the most relevant to our investigation and, in fact, the
first work to report results of the DNS of a laminar separation bubble in the presence
of an oscillating inlet flow is that by Wissink & Rodi (2003). Their computational
domain consisted of a no-slip flat plate at the lower wall and a free-slip boundary,
similar in shape to the upper half of a two-dimensional Venturi meter. Their Reynolds
number, based on Uo and a length scale L (proportional to the length of the flat plate),
was Re = 60 000. They have presented a sequence of snapshots, showing the contours
of the magnitude of the instantaneous vorticity along the wall normal. These have
shown the evolution of strong dipoles that propelled themselves and broke through the
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Figure 1. (a) A photograph and (b) a schematic drawing of the U-shaped water tunnel (all
dimensions are in cm). The tall square structure in the foreground (left) is the filtration system.
The working section is 148 cm high, 92 cm wide, and 10.7 m long. The two 6.7 m vertical
sections are each 183 cm wide by 92 cm long. (c) The separation angle, (d) the planes of the
laser light sheets, and (e) the coordinate axes.

original shear layer. This was considered as the precursor of the shedding of a roll of
turbulent flow. In addition to the dipoles, relatively small entrained instabilities were
found to grow very quickly and many three-dimensional vortical structures appeared
inside the separation region. These are, indeed, very similar to our observations to be
described in detail in the next section and demonstrate the value of numerical models
in providing additional insight into the physical mechanisms driving the separation
process.

2. Data acquisition
The experiments were conducted in a large U-shaped water tunnel where the flow

oscillated about a smooth cylinder (D = 184 mm) at a constant resonant frequency
of f = 0.187 Hz. Figure 1(a–e) shows the image and the schematic drawing of
the tunnel, the definition of the separation angle, the positioning of the laser light
sheets, and the coordinate axes. The selection of D was based on minimizing the
unavoidable wall effects, limiting K to values smaller than about 5, and maximizing the
Reynolds number. The exploratory experiments with a smooth cylinder of D = 5.08 cm
(L/D = 12) vibrating at (K = 3.45, β = 520, Re = 2000), in a different glass-sided water
tank (Sarpkaya 1986), exhibited only mildly turbulent separations, showing that at
relatively small Reynolds numbers the tendency of the flow to break up and to give
rise to localized three-dimensional phenomena is considerably reduced.

The spectra of the velocity at various positions in the test section (obtained through
the use of a three-dimensional laser-Doppler-velocimeter (LDV) system have shown
that the contributions of the second and higher harmonics are indeed negligible. The
transient period to reach a constant K from rest varied from six to ten cycles for
K < 1 and a smaller number of cycle for larger K (Sarpkaya 2002).
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The evolution of the structures in the separation region was recorded using two laser
light sheets, positioned as shown in figure 1(c–e), and a digital video camera (with
frame rates from 250 to 8000 frames/s and shutter speeds from 1/60 to 1/10 000 s)
for subsequent frame-by-frame analysis. In addition, the motion of the primary and
secondary separation fronts on the mid-section of the cylinder was determined as a
function of time through the use of six differential-pressure probes (for additional
details see Konstantinov & Dragnysh 1955; Rechenberg 1962, 1963; Achenbach 1968,
1971; and Sarpkaya & Butterworth 1992) and six flush-mounted hot-film sensors (see
e.g. Mendez & Ramaprian 1985; Eaton et al. 1979; Ruderich & Fernholz 1986). The
sensors have performed quite satisfactorily at K values smaller than about 8 and
yielded separation points remarkably close to those obtained with the differential-
pressure probes.

The output of the probes, fences, and other transducers (elevation, velocity,
acceleration, temperature, etc.) were sampled at a rate of 720 samples per channel
for 50 cycles of flow oscillation for a given angular position of the cylinder. Then
the cylinder was rotated (in the clockwise direction) at 5◦ intervals (with ample time
between the rotations to take data), and the procedure was repeated until the first
probe has rotated 360◦. Then the measurements were repeated by rotating the cylinder
in the counterclockwise directional at 5 ◦ intervals until the first probe returned to its
initial position. It is important to note that there were no mode changes in the course
of 144 sets of experiments for any K in the range of K values encountered in the
experiments. Therefore, there was no need to use a conditional sampling scheme to
identify and separate the prevailing flow modes. Additional details of the equipment
and procedures are given in Sarpkaya (1977, 1993, 2002).

Normally, the amplitude of oscillations and hence K are changed from one value
to another by enlarging or constricting a two-dimensional orifice in the pneumatic
system. For the present experiments, however, a particular K was set up in the tunnel
either by gradually increasing the prevailing K or by starting the flow from rest (after
a period of about an hour). The reasons for the two flow-establishment schemes were
partly to explore the history effects on the evolution of the flow structures and partly
to replenish the fluorescent dye, which dissolved after many cycles of oscillation.
Extensive observations and tape recordings with both schemes have shown that the
secondary separations did not develop immediately after arriving at a new K value
but took about 10 cycles or so to reach a quasi-steady state, i.e. no history effects
were observed after about 10 cycles. Evidently, the results of the experiments which
depend only on K and β cannot be compared with those which depend on K , β , and
∂K/∂t , as in the case of experiments with a cylinder undergoing damped oscillations.

3. Results and discussion
We have previously established (Sarpkaya 2002) that the (K , β)-plane (see figure 2)

may be divided into three regions: a stable region (K <Kcr ) in which there
are no structures identifiable by flow visualization, an unstable transition region
(Kcr < K < Kh) in which there are quasi-coherent structures leading to mushroom-
shaped coherent structures at K ≈ Kh, and an increasingly chaotic region (K > Kh)
where coherent structures undergo complex interactions, eventually leading to
separation and turbulence. The two boundaries defined by K = Kcr and K = Kh (after
Hall 1984) are not sharp demarcation lines. They should be regarded as narrow fuzzy
bands whose extent depends on observers’ ability to interpret ‘small disturbances’
and nearly ‘perfect’ mushrooms in laboratory experiments. We describe here only
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Figure 2. The (K , β) stability map (from Sarpkaya 2002). The horizontal solid line shows
the range of the present experiments.

the evolution of the structures for β =6815 as K is systematically increased from
Kh ≈ 0.6 to about 5, i.e. as the Reynolds number varies from about 4000 to 34 000.
The use of a relatively small K at sufficiently large Reynolds numbers simplifies
the observations and measurements (with sublayer fences and flush-mounted hot-film
sensors) primarily because the wake remains essentially symmetrical with respect to
the horizontal plane passing through the axis of the cylinder in the direction of the
ambient flow for K less than about 5.

In the following, the ambient flow is in the x-direction (left to right) in the interval
0.25 < t/T < 0.75 and negative in the interval 0.75 < t/T < 1.25. The axes y and z

are in the lateral (along the axis of the cylinder) and vertical directions, respectively.
Figure 3(a), for a light sheet in the (y, z)-plane, shows the side views of three vortex
tubes in the vicinity of the crown of the cylinder for Kh =0.65. It is representative of
relatively smooth mushrooms in the interval 0.60 <K < 1.2. The structures are spaced
by about 21 mm and the lateral dimension of the oval is about 9 mm and the vertical
dimension is about 6 mm. They are taken with a Yag laser pulsing at 32 ms intervals
for periods of 7 ns. The mushrooms or dipoles are not perfectly stable structures even
at K = Kh and there is considerable interaction between them on either side of the
Hall line, as evidenced by their deformation (as in figure 3b) and occasional merging
(as in figure 3c).

For K slightly larger than 1.2 or Re larger than about 8200 (depending on the
character of the random disturbances), the vortex tubes (dipoles) shown in figure 3(a)
develop streamwise waves or streaks, as in figures 4(a, b). These grow with K (as
in figure 4c), similar to those found in the transition of flow in a boundary layer
on a flat plate. With further (small) increases in K (to 1.38), one or more of the
tubes develop egg-shaped bulges or aneurisms, as shown in figure 4(d). As might be
expected, such bulges occur neither simultaneously nor at the same angular position
relative to the crown of the cylinder. Figures 4(e, f ) shows the rapid distortion of the
adjacent tubes and the expansion of the bulge in the foreground. Figure 4(g) shows
highly disturbed but still laminar structures. Finally, in figure 4(h) one can identify
the early signs of separation and the narrow eruptive spires as K approaches a value
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Figure 3. (a) The cross-sections of three vortex tubes or dipoles in the vicinity of the crown
of the cylinder in the (y, z)-plane for Kh = 0.65 (on the Hall line). The mushrooms are not
perfectly stable even on the Hall line, as evidenced by their deformation as in (b) and occasional
merging as in (c) over a period of about 20 cycles in the course of an uninterrupted run at
Kh = 0.65.

somewhere between 1.5 and 1.7, depending on the disturbances in a particular cycle.
However, the flow is still composed of large three-dimensional laminar structures
before it enters an ‘intermittent’ state at larger K . The discussion of the egg-shaped
structures (a three-dimensional oval) is deferred to figure 5.

Figure 5(a) shows the cross-sections of the dipoles in the (y, z)-plane in the interval
0.70 < K < 1.2. For a slightly larger K (about 1.4) or Re larger than about 9500, the
dipoles become increasingly irregular (figure 5b), come closer, and begin to intertwine
(figure 5c). With further increases in K , some tubes rapidly move towards the top
of the adjacent tubes as in figure 5(d–f) and undergo core bursting or some form of
vortex breakdown, described in detail in Sarpkaya (1971, 1995). The side views of
such breakdowns appear like egg-shaped bulges, as in figure 4(d–f). As K approaches
a value somewhere between 1.5 and 1.7, the dipole tubes break up into highly complex
three-dimensional structures (figure 5g). This is followed by the inception of numerous
eruptions (figure 5h).

The remaining figures show the motion of the separation points (measured from
the left stagnation point), and the structure of flow within the separation bubble.
Figure 6 is an example of the upstream motion (i.e. to the left) of the separation front
in the (x, z)-plane and the evolution of very complex structures in the separation
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Figure 4. The evolution and eventual breakup of the dipole tubes in the (x, z)-plane with
increasing K are shown at instant t/T = 0.25. The motion of the dipoles for a given K repeats
from cycle to cycle with surprising regularity, as seen clearly in high-speed video tapes.

region for K =3.45 (Re ≈ 23 500). In general, the pictures show that the separation
zone is composed of numerous dipoles and vortical structures of various sizes, which
become increasingly three-dimensional. This is compounded by the changes in the
velocity and acceleration within as well as outside the separation region. For the case
under consideration, the separation which began at t/T ≈ 0.27 at about θs = 160◦

moves very rapidly towards the crown of the cylinder in �(t/T ) = 0.08 (≈0.43 s)
and reaches θs = 84◦ at t/T = 0.35 (figure 6a, filled triangles in figure 7) with a
mean dθs/dt ≈ 178◦ s−1. As the flow continues to accelerate (left to right) in the
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Figure 5. Each frame in the (y, z)-plane shows an instant (t/T =0.25) for a given K . The
three-dimensionality of the dynamic system and the surprising regularity of the intertwining
motion of the dipoles in each cycle are clearly seen in high-speed video tapes.

time interval 0.25 < t/T < 0.50, the separation front moves rather slowly to θs = 81.5◦

at t/T =0.40 (figure 6b). The reason for this is that the velocity and acceleration
reach 70 % of their maximum values at t/T =0.375 in a direction opposite to that
of the motion of the separation point. The front of the separation remains well
defined as long as the velocity and acceleration are in the same direction (figure 6c
(78◦, 0.41), figure 6d (75◦, 0.43), and figure 6e (72.5◦, 0.44)). As t/T approaches 0.50,
as in the case of figure 6(f ) (64◦, 0.49), the velocity nears its maximum, as the
acceleration tends to zero. The structures begin to grow rather rapidly in the radial
direction, break up into large lumps or turbulent patches (separated by small regions
of smooth flow) along the arc of the separation region, and secondary separation sets
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t/T = 0.35
θs = 84°

t/T = 0.40
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Figure 6. Evolution of the structures of separation at eight sequential instants forK =3.45
and Re = 23 500: the times, the separation angles, the breakup of the laminar structures, and
the secondary separations (identified by white lines) on the wall (clearly seen in f–h). The
separation angles for (g) and (h) cannot be determined from the video pictures but they are
available in figure 7 from the sublayer fences and hot-film sensors.

in (near the crown of the cylinder as seen in figure 6f–h). The secondary separations
were easily detectable with both hot-film sensors and sublayer fences. However, the
hot-film sensors produced sharper signals. The numerical simulations of Wissink &
Rodi (2003) exhibited similar structures in their spanwise vorticity snapshots even in
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Figure 7. Instantaneous separation angles within one period for K = 3.56, Re= 23 500 (filled
triangles); K =3.95, Re= 27 000 (filled squares); and K = 4.45, Re =30 300 (open squares).
Measurements with the differential probes and the flush-mounted hot-film sensors for K = 3.95,
Re =27 000 are shown with open circles. No distinction was made between them because of
their remarkably close agreement.

a significantly different flow geometry. A similar separation occurs on the lee side
of a prolate spheroid (a submarine body) and forms a surface that rolls up into
the secondary vortex located underneath the primary vortex (Chesnakas & Simpson
1997; Sarpkaya 1992).

For t/T � 0.50, the ambient flow begins to decelerate and the shape of the
separation front, internal structure of the separation region, and its approximate
envelope become increasingly irregular. Even though it is possible to see the onset
and evolution of the secondary separations in figure 6(d , e), there is no ambiguity
about the occurrence of secondary separations in figure 6(f–h) and the rapid increase
of the vertical extent of the separation region. It is also noted that the brightness of
the structures in the latter frames is reduced, partly due to the attenuation of the light
in the thicker separation layer and partly due to the faster diffusion of the dye in a
region of enhanced mixing. The open symbols in figure 7 denote the separation data
obtained through the use of the sublayer fences and flush-mounted hot-film sensors.
No distinction was made between them because of their remarkably close agreement.

Figure 8 shows the upstream motion of separation for K = 3.95 (Re ≈ 27 000).
Both the ambient velocity and acceleration are from left to right, as in the case
of figure 6. The separation which began at t/T ≈ 0.27 at about θs = 160◦

moves rapidly towards the crown of the cylinder in � (t/T ) ≈ 0.05 and reaches
θs ≈ 108◦ at t/T ≈ 0.31 (figure 8a, filled squares in figure 7). As the flow continues to
accelerate (see figure 7) in the time interval 0.25 < t/T < 0.75, the separation moves
to θs = 100◦ at t/T = 0.32 (figure 8b). The front of the separation is well-defined
and the separation region contains several vortical structures and shows the onset of
turbulence. Furthermore, it is evident from the flow structures behind the primary light
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Figure 8. The times, separation angles, and the evolution of the structures of separation are
shown for K = 3.95 and Re= 27 000. Frames (e–g) show the eruption of double-sided shear
layers (identified by white lines) and the rapid transition to turbulence.

plane that the flow is three dimensional (this is seen clearly in videos). In figure 8(c),
the separation point is seen to move rather slowly to θs =98◦ at t/T = 0.33. As
noted above, the velocity and acceleration (in the opposite direction to the motion
of the separation front) reach 70 % of their maximum values at t/T = 0.375, in a
direction opposite to that of the motion of the separation point. Thus, it is natural to
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Figure 9. A sample moving separation (K = 3.95) composed of a number of shear layers
(magnified about twenty times). The size of the photographed region is about 3 mm by 1.5 mm.
Figure 8(e, f ) exhibits similar separations.

expect the speed of the separation front to slow down. Figures 8(d) (91◦, 0.34), 8(e)
(83◦, 0.35), 8(f ) (80◦, 0.40), 8(g) (70◦, 0.45), and 8(h) (63◦, 0.48) show the evolution
of numerous vortical structures, secondary separations, and the intensification of
turbulence.

Figures 8(e–g) shows the eruption of double-sided shear layers. However, they are
somewhat more complicated than the single eruptions seen in steady flows, particularly
near their roots or the region of their inception on the boundary. Figure 9 shows
for K = 3.95 the inception of a sample moving separation composed of a number of
shear layers (magnified about twenty times).

Figure 10 shows the upstream motion of separation for K = 4.45 (Re ≈ 30 000).
Both the ambient velocity and acceleration are from left to right, as in the other
cases. The separation which began at t/T ≈ 0.27 at about θs = 160◦ moves rapidly
towards the crown of the cylinder in �(t/T ) ≈ 0.04 and reaches θs ≈ 108◦ at t/T ≈ 0.31
(figure 10a, open squares in figure 7). Unlike the previous cases at lower K, the
separated region is now turbulent as evidenced by the intense mixing and rapid
diffusion of the dye. It is for the same reasons that the front of the separation region
is not as well-defined as in the previous cases. As the flow continues to accelerate
(left to right) in the time interval 0.25< t/T < 0.50, the separation moves to θs = 98◦

at t/T = 0.32 (figure 10b). In figure 10(c), the separation point is seen to move rather
slowly to θs = 94◦ at t/T = 0.34 where the separation point is clearly defined. The
speed of the separation front is slowed down for the reasons noted earlier (Uand dU/dt
being in the opposite direction to the motion of the separation front). Figures 10(d)
(88◦, 0.36), 10(e) (81◦, 0.38), and 10(f ) (71◦, 0.43) show the evolution of numerous
vortical structures, secondary separations, and the intensification of turbulence. In
figures 10(g) (62◦, 0.48) and 10(h), the inner separation region is overtaken by the
turbulent patches (with larger ambient velocity) directly above them.

Numerous such visualizations have been evaluated at additional K values between 3
and 5. However, the fundamental character of the structures did not differ significantly
from those shown in figures 6 (K = 3.45, β = 6815, Re = 23 500), 8 (K = 3.95, β = 6815,
Re =27 000), and 10 (K = 4.45, β = 6815, Re = 30 000). For the experiments reported
herein, an observer watching the crown of the cylinder while maintaining K constant
sees, in a half-cycle (about 2.7 s), laminar flow, motion of the separation front, and
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(a)

(b)

(c)

(d)

(e)

(g)

(h)

( f )

t/T = 0.31
θs = 108°

t/T = 0.32
θs = 98°

t/T = 0.34
θs = 94°

t/T = 0.36
θs = 88°

t/T = 0.38
θs = 81°

t/T = 0.43
θs = 71°

t/T = 0.48
θs = 62°

t/T = 0.53

Figure 10. The times, separation angles, and the evolution of the structures are shown for
K = 4.45 and Re =30 300. It is remarkable that their general forms and angular positions
reappear from cycle to cycle even at these K and Re values. The separation angle for (h)
cannot be determined from the video pictures but it is available in figure 7 from the sublayer
fences and hot-film sensors.

localized three-dimensional phenomena, dependent on K (for a given β), dipoles and
laminar patches, the breakup of the coherent structures into smaller and smaller
scales (with increasing distance from the separation bubble), secondary separations,
and intense mixing leading to three-dimensional fully turbulent flow. Although no
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two cycles are exactly alike, or can they be, the basic identifiable characteristics of
the separation bubble for a given (K , β) are nearly repeated in the opposite direction
in the next 2.7 s, as evidenced by numerous observations, measurements, and video
recording at the three K values noted above for β = 6815. Evidently, separation on a
cylinder undergoing sinusoidal oscillations in a fluid otherwise at rest is not a single
simple eruption moving along the surface of the cylinder. In fact, in the light of
the experiments, one realizes that the separation ‘bubble’ in an oscillating flow must
break up into dipoles and three-dimensional vortical structures, sandwiched between
more quiet regions of flow, due to rapidly changing velocity and pressure gradients
over the crowns of the cylinder.

4. Concluding remarks
In the range of K values and Reynolds numbers (or β values) encountered in these

experiments, the separation is three-dimensional, far from being a single eruption of
a double-sided single shear layer or the departure of dye filaments from the surface
of a self-contained bubble. The increase of the three-dimensionality of flow, evolution
of various sizes of structures, changes of the gradients of velocity, acceleration, and
pressure along the moving separation region, secondary separations within the primary
separation zone, occasional eruption of multiple shear layers and the enhancement of
small-scale structures render the numerical simulation of separation in time-dependent
flows a challenge for the distant future. The results presented herein may provide
realistic guidance for the modelling as well as the explanation of three-dimensional
flow detachment from no-slip curved boundaries.

The work described herein was presented at the IUTAM Symposium on Unsteady
Separated Flows at the ‘Institut Méchanique des Fluids de Toulouse’ on April 8–12,
2002. The support of the research program over a period of four years by the National
Science Foundation, the Office of Naval Research, and the Naval Postgraduate School
is gratefully acknowledged. A special note of thanks is extended to Messrs P. Parker,
C. Merrill, and F. Novak for their assistance with the experiments. The comments of
the referees are appreciated.
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